VIMOS SOFTWARE FAMILY

Using the Editor

28 December 2005

SN0

Sysiems

ol

Vision Systoms

VIMOS Software Family Using the Editor

Thank you for your interest in our Vision Inspection and Optical Measurement System (VIMOS). In this
manual you will find information about the Editor — our visual development environment, which
speeds-up and improves the process of developing and testing a new VIMOS user-program.

Before going on reading the manual, we kindly ask you to read the following

DISCLAIMER

This documentation is provided for reference purposes only. While efforts were made to verify the completeness
and accuracy of the information contained in this documentation, this documentation is provided “as is” without
any warranty whatsoever and to the maximum extent permitted, atto-Systems Ltd. and Wolf Systeme AG disclaim
all implied warranties, including without limitation the implied warranties of merchantability, non-infringement and
fitness for a particular purpose, with respect to the same. Neither atto-Systems Ltd. nor Wolf Systeme AG shall be
responsible for any damages, including without limitation, direct, indirect, consequential or incidental damages,
arising out of the use of, or otherwise related to, this documentation or any other documentation. Notwithstanding
anything to the contrary, nothing contained in this documentation or any other documentation is intended to, nor
shall have the effect of, creating any warranties or representations from atto-Systems Ltd., Wolf Systeme AG or
any of their suppliers or licensors, or altering the terms and conditions of the applicable license agreement
governing the use of this software.

The described software is provided ‘as is', without any warranty expressed or implied. No guaranty is given that
the software is suitable for any given purpose.

COPYRIGHT

Under the copyright laws, neither the documentation nor the software may be copied, photocopied, reproduced,
translated, or reduced to any electronic medium or machine-readable form, in whole or in part, without the prior
written consent of atto-Systems Ltd or Wolf Systeme AG, except in the manner described in the documentation or
the applicable licensing agreement governing the use of the software. All rights are reserved. Do not reverse-
engineer. Do not modify or distribute without all of the documentation.

© Copyright atto-Systems Ltd. and Wolf Systeme AG

Atto-Systems Ltd. Wolf Systeme AG
Sofia, Bulgaria Karlsbad, Germany

All rights reserved.
TRADEMARKS

All trademarks and copyrights mentioned within the documentation are respected. They are the property of their
respective owners.

ddd 28 Dec 2005 Page 2 of 37

VIMOS Software Family Using the Editor

CONVENTIONS USED IN THIS MANUAL

File
File > Open

1.1.
Introduction

Ctrl+E

ddd

INFORMATION. This sign marks section in the manual, which is for information only. You
can decide to read or skip this section.

ATTENTION. This sign marks section of the manual, which is particularly important for the
general understanding of VIMOS. Please, make sure to read this section before
proceeding with reading the manual.

TIPS & TRICKS. This sign marks a Tips & Tricks section. Here you can find some practical
advises on using the system or get a more detailed explanation of some features. Reading
this section may help you in solving a particular problem or give you some ideas but is not
vital for understanding VIMOS.

PREMISE. This sign marks a section, which requires you to do something before
proceeding with reading the manual. Usually this is a demo program you have to run or
something similar.

Menu item
Sub-menu item

Section name. If the section is within the current manual no manual name is specified.
When the section is within external manual the name of the respective manual is also
included.

Hot-key combination. The first part of the combination specifies which system key to use.
Possible values are: Ctrl, Alt, Shift. The second part specifies the normal key to be used in
the combination.

28 Dec 2005 Page 3 of 37

VIMOS Software Family Using the Editor

CONTENTS
I LN O 1010 L@ 1 1] SR 6
1.1, EDITOR WINDOW ... cetuttiuteaueesteesteesteesseastesssessessteestessaeaseeassesseeaseenseasseessesssasseesbeesbesseesnsesnsesseeaseenseensesnsensenssenns 6
1.2. USER-PROGRAM DIAGRAMcutitiatieueisteiteaststesutaseaseesseste st sbease s aseesseseeab e s besbe et e e sees b e ne e b e s beaheabeeseennenn e nenresne s 7
1.3. RUN THE DEMO PROGRAMScuttitiauttauteattesteesteestessseasseassesseeastasseasseassesssasseesbeesbeeasesaseaaseasseabeanbeanbeanbassnnssneas 7
1.4, REGISTER THE EDITOR ...ciiutiiiiiiti ettt ettt m e m e m e n e ame e aneenn e nn e e rennnennee 7
2. EDITOR FUNCTIONS ...ttt sttt et h ettt e e bbb e b e e Rt ekt e b e b ekt sbeeb e e bt es b e e e nbenbeane s 9
2.1. WORKING WITH USER-PROGRANMSecuttiuttaietateesteesseesseassesssesseesseesseassesssssesanessseaaseesseassesssessesssesssesssesnsesnns 9
2.1.1. USEr-pProgram PIOPEITIEScc.cieiteieeeeieitestestestesteeteeseeseessessestessessesseessessessesteseestestesseasesssessessensessessenses 9
2.1.2. Create @ NEW USEI=PIOQIAIMccueirertreueestesteeseeeseeeeessessseesseesseasseassssseesseessesssessessesssesssesnsesnessseesseenes 10
2.1.3. Open an exiStiNg USEI-PrOgIaM........cceieeeireiesesieeeessessessessessessessessesssessessessessessessesssesssssessessessessessens 10
S T 1Yol =T g o[- OSSR 11
5 BT U 13 To (oL =To [0 O OSSOSO OROPRPPR 11
2.1.6. Refresh the GIAgFamMcoiiiiiie bbbttt bt nens 11
2.1.7. Integration With VIMOS SIMUIALOTcoiuiiiiiiirieeieeese et 12
2.1.7.1. Run user-program in the STMUIALOTciiiiiiii et bbb 12
2.1.7.2. Edit user-program in the STMUIALOTciiiiiiie ettt sne 13
2.1.7.3. Manual USEer-program IMPOIT...........cuiiaeieierterte et etesteseeseeseeeeseareaaeseeaseseeseeseaseasessessessaneaseasessesseaseseensasessens 13
2.1.7.4. Manual USEr-Program EXPOITeueiiiaeriesiesieieseeseetesteseesteeeseeseatessestesseseeseaseasessessenseseassaseasessessessessnnsasessens 13
2.2. MANAGING DIAGRAMS......c.teiteeiteeiteatt sttt ateeateasseasteasseassesbeesbeease e seaaseaaeeaae e bt eabeasbeebbeebeeabeenbeebeansesaeesbeenbeanns 13
N Ao o] 1 T T T TP U TP TP TOPTPP 13
2 N - | T USSP 14
AR T Y (o ol o LSOO SRRSO URO PSR 14
2.2, SEIBCE ICOMS ...ttt b ettt b et b e et s b et e b s b et e b s b et e b e b e st et e e b et ebe e b et e b e b st et bens 14
T N -V g [T oSSR 14
2.2.8. DEIBLE ICONS......iiveiiiteiieeee ettt b ettt b et b e bt b e bt bbb bR bbbt bens 15
N R O] o)/ - 1) SRS 15
2.2.8. DUPHICALE ICONS ...ttt sttt et b et b et b et b ettt e bbbt et bt bbb b 15
2.2.9. USEE COMMEBNTS ...eutti ittt ettt ettt et e et e s e e et e e s te e e bt e e s teeeteeeateeebeeesteeesseeeabeeesteeessaeeteeantaeanseeenteeanreeans 15
2.2.9.1. ComMMENE IAI0G DOX ...ttt ettt b et et et st et et be b b e seeneereanea 16
2.3. MANAGING USER-PROGRAM TOOLSeviiiiiiiiiieitiire it sre sttt s sb bbbt s sh bbb s 17
B TN O o T I o (o] o= TSSO 18
2.3.2. CoNditioNAl DIANCREScuiiiiiiie bbbttt 19
2.3.3. ENabIe/disable @ t00N...........ooiiiiii e e 21
2.3.4, HIE/SNOW 8 00N ..ot ettt bbbt 21
2.3.5. CONNECLING TOOISveviieieite ettt bbb bbbt b et et b et et b et et nrns 21
2.3.6. TOOI HNKS.....uiiitiiiticie ettt ettt et st e s te e sbe e e eae e sbe e ebeeabeea b e etsesbeesbeesbeebeeneesnnesaeenbeenns 21
2.3.6. 1. WIBW TINKS ...ttt sttt h bt b e b e e e e R e e Rt e b e e b e e b e et et e e ene e b e e beebenbebe e eneereanea 21
2.3.6.2. LinK argumeNtS @NG FESUITS........eiueieeiieteete ettt sttt b et ettt esbe st e b e e e e eseebeabesbesbeseeneereaneas 22
P TR T B 1= 1) N [T OSSR PSPPSR 22
2.4, SUBROUTINESttiuttautiatieateesteesteaaaeasseaaeeaseesbeasseasseassa st sesbeesbeeoeeeaeeeae e eRe e oh £ 2 bt 2 a bt eR b e eb b e eE e e nb e e nbeebeenneeaneabeeeneenns 22
2.4.1. PUDIC argUmMENTS/TESUILS.......uiiiiiiiiiee ettt bbbttt et nbe b nne s 23
2.4.2. CalliNg SUDIOULINESc.voiiiviitisie ettt st sttt e te st e s teeaeeta e e et e saesbesbesbeeteeneeneesreneenrennens 24
2.4.3. LiSting SUDIOULINES USE.......cviieieiiie e ste ettt sttt sttt et e st st esbesbeetaeneeneesreneenrenne s 24
2.4.4, COllECTING SUBIOULINES ... vicviiieciicieicie ettt st te et te e s s e et e e saesbesbeebeetaeneeneesreneenrennens 25
2.4.5. Reloading efiNItIONScviiiieiires sttt e e re e e e nrenrenrenne s 25
2.5. EDITOR OPTIONSuttiutiititstiasteesteesteateaieesteesbeebeasbeas e et sesbeesbe e s ee e s e e eas e ehe e eh e £ bt ekt ea b e eh b e nb e e nbe e nbeebeenneeaeeeneenneenes 25
3. EDITOR SPECIAL FEATURES ..ottt bbb bbbt an e 27
3.1 PSEUDO-TOOLStiiteiteiite ettt ateesttesteesteestesteesbeesbeesbeesteaseeaaeeebeesbeenbeenbees b e ebeesbeenbe e beesbesmeeabeeabeenbeenbeenbenseenreens 27
200 I |V To T U T-R (oo DRSSO ROPRPPR 27
I8 B o 1041 (=] £-30 (0o H OO ROTSOTOROPRPPR 27
TN I R - 1 (o1 =1 (o] OO RUROU R URTRPRPRRN 28
3.2. TOOL ARGUMENTS AND RESULTSttttttsteeteeseesressessestessessesseesseseeasessessessesseaseassesseseeasessessessesseensensessensessens 28

ddd 28 Dec 2005 Page 4 of 37

VIMOS Software Family Using the Editor

B S (1= oSSR 28
B N N g 0| Lo (=T] o OSSOSO PORRPRTN 28
T A o 1131 08 =T 4 [o TSSOSO TP TS PORURPRTN 28

3.2.2.Variable TyPe argUMENTScciciiieeiese et te ettt st et te et e e et e b e st e besaesteeseeneeeeneeneesreneesrenrens 29

IR T (T U | =Y o] ot 1o LSRR 29

I T 1411 o] -SSP 29

4, USER INTERFACE REFERENCEc oottt ettt sttt e e et saaa e s s eb e e s s entae s sanens 31
A N T Y= O RSO 31

N O 1 LTSRN 31

2 o || R 31

O VA TR 31

O 1o o £ 32

TS o (o =T 32

IO TRV T o [32

R o - | o USSR 32

N |V N N 10 T =7 = SRRSO 32
4.3, ICON CONTEXT MENUoiiuttieiiieeieeiittittieee e s e sibbattsesesssaabbataeasesssasbbabeeesesssasbbebeeeseessasbbebeesseessesababasssesssassrebeness 33
4.4, OUTPUT WINDOW CONTEXT MENU ...eiiiiuvieeiitreieeitieeeiseesesisbeessssseesessssessssssesssssessesssssssssssessssssessssssssesssssenes 34
TR 2 (018 KLUl W =2 TR 34
5. MESSAGE REFERENCQCE..........c oottt ettt e ettt e e s e e e e bt e e s bta e e s eabeeessabbeeeenteeeesanees 35
B.1 WARNING MESSAGESouttttiiieeiesiitttetteee e s e sebbattsesesssaabbetaeasesssasbbaseeesesssasbbebeesseessasbbebeesseessasababeessesssessbebeness 35
5.2, ERROR IMESSAGES ...iiiiiiiiitttttiieetesiittbartee s e s s it betee e s e et saabbaba e e s e et saab bbb e ee s e et saa b b et aeeseesaes b b e beeeseesse bbb beesseessaabtbanes 35

ddd

28 Dec 2005 Page 5 of 37

VIMOS Software Family Using the Editor

1. Introduction

The Editor is part of the VIMOS software family. It is designed to help you create and edit VIMOS
user-programs. The Editor can exchange these programs with the Simulator and the camera.

\
N
QO INFORMATION. See Getting Started for an introduction to VIMOS.

Of course you can edit user-programs with the Simulator or directly on the camera, but the Editor is
more convenient for this task. It presents the program as a diagram, which reflects its structure and
content in a more natural way. The Editor also provides visual means to manipulate the user-program.
Many operations, that require complex navigation in the limited user interface on the camera, are
achieved with a couple of mouse clicks in the Editor. This is possible because the Editor takes full
advantage of Windows GUI.

1.1. Editor window

The Editor employs the standard GUI features, seen in almost any other Windows application. So, if
you have used Windows before, the Editor should be familiar to you.

These are the major components of the Editor window:
¢ Main menu — provides access to all commands
e Main toolbar — buttons for quick access to frequently used operations
o VIMOS tools palette — toolbars containing VIMOS tools for use in the user-program
e User-program windows — currently open user-programs, each in a separate window
e Output window — displays status and warning messages
e Status bar — displays current status or selected command’s description

The following figure shows the major components of the Editor window:

Main menu
VWIS E clox - Daeftng lasivd dome 1 aef
\ Fis [‘ow Tooe ain

[

User-programs =i P

Main toolbar ——— D&M = e 2 i -2 @& b & T
e < @PECLA+H S, SO FR-A BT RERI?EA2EET
VIMOS tools palette EMcarMHAARR +OREERER FFPFAA2RLER S

MANR&EE"MTH22*ANEARARET >a W =l B MM 0GR

. — =ioix

_—

e

B

L

= Eascapeagy o R
|

=l

(diagrams) J o ol
\Iﬁ\ :'

.

Output window ———— Desssacic£Sgure
Un:nnnrdrﬂlqunr ;I
Status bar ————— st s

ddd 28 Dec 2005 Page 6 of 37

VIMOS Software Family Using the Editor

You can rearrange window components or selectively hide/show any one of them. To do this, use
View and Window menus.

1.2. User-program diagram

The Editor presents each user-program in a visual way that allows you to grasp quickly the logic of
your program. The Editor employs a diagram notation that is widely used to describe algorithms.

Generally a diagram consists of icons, some of them being connected with arrows. Rectangles depict
user-program tools and diamonds — conditional branches. Arrows show the path of execution. It
always starts at the Begin icon and terminates at an End icon (could be more than one). Rectangles
with rounded corners represent user comments. The little dots scattered on the workspace are the
grid, which is used to align icons.

FindBlobs] ~~ [GetBlobt] =~ " [Contour
Tool i Tool i
begin [—={ * ®5

...................... e {.

In section “2.2. Managing diagrams” you will find out how to manipulate the diagram.

1.3. Run the demo programs

See the “Getting started” manual for detailed instructions how to run the demo programs provided with
VIMOS software family.

1.4. Register the Editor

This software is usually distributed as a 30-days trial version for free. After the trial period has expired,
you will not be able to use it. When you buy the software this limit is removed.

Here is the registration procedure:

1. Choose Help > Register menu option. Copy the Product ID from the registration dialog box.
Send this ID together with details about your payment to the software supplier.

2. The software supplier will send you back the registration key. Enter it in the Registration key
filed within the registration dialog. Press Register. The Editor will inform you of the result of the
registration.

ddd 28 Dec 2005 Page 7 of 37

VIMOS Software Family Using the Editor

Regizter Y¥YIMOS Editor

ddd 28 Dec 2005 Page 8 of 37

VIMOS Software Family Using the Editor

2. Editor functions

2.1. Working with user-programs

The Editor uses multiple-document interface (MDI), like MS Word and many other Windows programs.
This allows you to have more than one user-program open at the same time. Each one of them is
displayed in a separate window inside the main application window. You can arrange user-program
windows with the commands from Window menu.

The Editor stores each user-program in a file with _.aef extension. This file uses a private format,
which is recognized only by the Editor. That is why this file cannot be directly used in other parts of the
VIMOS software family. The Editor provides other means to exchange user-programs with the rest of
the VIMOS (see section “2.1.7. Integration with VIMOS Simulator”).

ATTENTION. Although the Editor files (.ae¥) are not recognized and cannot be used by
the Simulator and the VIMOS-Kernel directly, there is a simple way to exchange your user-
programs between the members of the VIMOS software family. See section “2.1.7.
Integration with VIMOS Simulator” to find out how to exchange user-programs between the
Editor and the Simulator.

2.1.1. User-program properties

The Editor maintains a set of properties for each user-program. They are stored in the .aef file.

Currently the following general properties are supported:
e Author — this should be the name of the person who has created the user-program. Actually,
this can be any text string with no restrictions.

e Creation date — date and time when the user-program was created
e Last modification — date and time when the user-program was last modified

e Target camera — Camera model for which the user-program is designed. This property affects
the set of available user-program tools. Some tools are not available on some camera models.
So, depending on the value of this property some tools could be disabled. To find out what
tools are available on what camera models, refer to the “Tools’ Description” manual.

To review or modify user-program properties select File > Properties menu option. This will open the
Project Properties dialog.

Project Properties |

General | Properies |

Athar; IJ ahn

Creation Date: |1 1:56: 44, Wednesday, Movember 12, 200

Last Modification: |:4?:EIE, Wednesday, December 10, 2003

Target Camera: IR-’I:2EISE j

Cancel |

ddd 28 Dec 2005 Page 9 of 37

VIMOS Software Family Using the Editor

Also a number of additional properties are stored in each user-program. They affect the Vimos-Kernel
so look in “Using the Vimos-Kernel” for more details.

Project Properties |
General Fropertiez |
Froperty " alue I;
Run-mode Shoot & Show
Shutter 10000
Dyerlay colowr | Ox00FCO000
moLzetpe Micrazaft [nteli Mouse
vatep a
indevice Otker 140 device
baudrate Ae00 b
indalan il ;I
] I Cancel |

2.1.2. Create a new user-program

Since the Editor uses MDI, you don’t have to close any open user-program before creating a new one.
To create a new user-program use one of the following alternatives:

o Press New button E in the main toolbar
e Select File > New menu option
e Press Ctrl+N key combination

This will present you the Project Properties dialog. Here you enter author name and target camera
model. See section “2.1.1. User-program properties” for details on this dialog. Press OK to continue.
You can change the properties anytime you wish as described in section “2.1.1. User-program
properties”.

A new window is opened. It contains an empty diagram with a single Begin icon. Now you can start
composing your new user-program.

2.1.3. Open an existing user-program
Since the Editor uses MDI, you don’t have to close any open user-program before opening another

one.
To open an existing user-program, created by the Editor, use one of the following alternatives:

e Press Open button g in the main toolbar
e Select File > Open menu option
e Press Ctrl+0 key combination

e Double-click the desired diagram file (.ae¥F) in Windows Explorer. You should have installed
VIMOS Editor successfully, for this to work.

INFORMATION. The Editor is backward compatible. This means that it can open diagrams
@ created by older Editor versions, but it cannot open files created by newer versions.

In order to get more power and flexibility, tools’ format can change in new VIMOS versions.
This means that tools’ arguments and results can change. Usually newer versions add

some new arguments or results to a couple of tools. This change is safe because it does
not affect old user-program data.

ddd 28 Dec 2005 Page 10 of 37

VIMOS Software Family Using the Editor

If some tools in your user-program use an older format, they will be automatically converted to the new
format. The Editor will display warning messages in the Output window for each tool it had to convert.
You can find message descriptions in section “5. Message reference”. You should check each warning
message to verify that the behavior of your user-program is not altered.

If the Editor has loaded the file successfully, it displays the diagram in a new window.

2.1.4. Save changes

To keep the changes you have made to a diagram, you should save it to file (.aef). To do this use
one of the following alternatives:

e Press Save button E in the main toolbar

e Select File > Save or File > Save As menu option

e Press Ctrl+S key combination

When closing an unsaved diagram the Editor will prompt you to save it.

INFORMATION. We strongly recommend you to save your diagram (.aef file) in the
same folder, where the rest of the files for your user-program, such as VIMOS Kernel
program(s), images, etc, are stored. It is good practice to keep each user-program in a

ES separate folder (workspace).

For more information see section “2.1.7. Integration with VIMOS Simulator”.

2.1.5. Undo/redo

The Editor is forgiving. If you accidentally make a mistake or change your mind, you can undo the
changes you have made to the diagram. This actually restores a previous state of the diagram.

These are the alternative ways to undo changes:

e Press Undo button ﬂ in the main toolbar
e Select Edit > Undo menu option
e Press Ctrl+Z key combination

As you undo changes, they are not irretrievably lost. If you change your mind, you can redo them
again. However, you cannot redo changes, if you have made any modifications after the undo
operation.

Use one of these alternatives to redo changes:
e Press Redo button ﬂ in the main toolbar

e Select Edit > Redo menu option
e Press Ctrl+Y key combination

What is even better, the Editor supports multiple levels of undo/redo. This allows you to trace back
and forth the recent history of your diagram. Look in section “2.5. Editor options” to find out how to
adjust the levels of undo/redo.

2.1.6. Refresh the diagram

You can tell the Editor to redraw the whole diagram. To refresh the active diagram use one of these
alternatives:

e Press Refresh button @ in the main toolbar
e Select View > Refresh menu option
e Press F5 key

ddd 28 Dec 2005 Page 11 of 37

VIMOS Software Family Using the Editor
The diagram will blink. Now it reflects exactly the underlying data.

2.1.7. Integration with VIMOS Simulator

Most program-editing tasks can be done in both Editor and Simulator, but there are some operations
that can be accomplished only with the Simulator. For example to position a tool visually on an image,
you need to see that image. Since images are not available in the Editor, you have to use the
Simulator for this job.

The Editor and the Simulator provide means to exchange user-programs. This section will show you
how to do that.

INFORMATION. Since Editor and Simulator cannot share user-program files directly,

some sort of conversion has to be done. An intermediate metaprogram file (.mpr) is used
o for this purpose. Both Editor and Simulator can import/export user-programs from/to -.mpr
—N files. Usually this conversion happens automatically and you do not see it.

Metaprograms are actually text files and in rear occasions it could be useful to view or edit
them.

Metaprograms have limited capabilities and do not support all Editor's features. So when
exporting a diagram to metaprogram, some information (like comments) could be lost.

INFORMATION. The cooperation between Editor and Simulator will work only if you have
installed VIMOS software family successfully on your PC.

Whenever the Editor needs the Simulator, it will launch it automatically. If the Simulator is already
running, the Editor will use it instead of starting a new instance. If the Simulator is busy with some
other task, you will get an error message. For details see section “5.2. Error messages”.

@ II]I ATTENTION. Any unsaved changes to the current user-program in the Simulator are lost
pfd when the Editor transfers a new one.

If your user-program is not complete or has errors, it will not be transferred to the Simulator. In this
case you will get error messages in the Output window. Select a message to make the Editor highlight
the icon causing the error. For description of error messages go to section “5. Message reference”.

Note: Whenever the Editor transfers a user-program directly into the Simulator the working folder
(workspace) in the Simulator will be set to the directory of the transferred diagram (.aef file). This is
important because the current workspace determines a number of Simulator settings, like the image
source. For more information about Simulator workspace see “Using the Simulator” manual.

ATTENTION. A user-program in the Editor (a diagram) is not associated with any image
[I]] source. This is done in the Simulator. So, to have your program working on the proper
i image we strongly recommend you to save your diagram (.aef file) in the folder of the

respective Simulator workspace.

2.1.7.1. Run user-program in the Simulator

You will often need to test your user-program in the Simulator. You can do this very easily from the
Editor; just choose one of these alternatives:

e Press Run button ﬂ in the main toolbar
e Select File > Run in Simulator menu option
e Press F9 key

This will transfer the active user-program to the Simulator and start it. You will see your user-program
running and observe its results. You may need to switch manually to the Simulator application.

ddd 28 Dec 2005 Page 12 of 37

VIMOS Software Family Using the Editor

If there is no open diagram, this command will not be available.

2.1.7.2. Edit user-program in the Simulator

To configure a specific tool in the Simulator, right-click its icon on the diagram and select Edit in
Simulator from the context menu. This will transfer the user-program to the Simulator and select the
chosen tool for configuration. You may need to switch manually to the Simulator application. Editor
and simulator versions 2.80 and higher support interactive move/resize/rotate operations by the
mouse using the buttons # & and respectively. The M putton is used to move tools with 2 or
more point arguments. Terminate editing of current tool and return to parent “Configure program
element” menu by right mouse click.

To update the user-program in the Editor with changes you have made in the Simulator, press F6 key
or select File > Update in Editor menu in Simulator.

Some tools in Editor cannot be edited in Simulator. For Details see section “3.1. Pseudo-tools”.

2.1.7.3. Manual user-program import

As described above in this section, the Editor can import metaprograms exported by the Simulator or
by the Editor itself.

To import an -mpr file in Editor choose menu File > Import. Next, browse for the desired file. The
Editor will import the chosen file and open a new window containing the rendered diagram. The new
window will become active.

If there are any errors in the import process, you will see them in the Output window.

This operation does not affect the currently active diagram.

2.1.7.4. Manual user-program export

To export the active diagram, choose menu File > Export or press Export button M" . You can select
an export format from:

e Meta-program file (*.mpr) - Editor will convert the active diagram to metaprogram and save it
in the chosen file. If export is successful, you can import that file in the Simulator or back in the
Editor.

e Enhanced metafile (*.emf) — the diagram will be saved as scalable graphics. This standard
file format can be used with many popular programs including MS Word and Excel.

e Text file (*.txt) — the user-program will be saved as simple text. This is intended only for
advanced users. This file cannot be imported back in the Editor or Simulator, it is just text.

If there is no open diagram, this command will not be available.
2.2. Managing diagrams

2.2.1. Zoom

Zooming is a very useful feature, present in almost all drawing applications. With its help you can
balance the extent and the detail of the view (the visible portion of the diagram). When you zoom out,
you see more of your diagram but in less detail and vice versa.

There are two ways to change the zoom level:
e Zoom dropdown in the main toolbar. It also displays the current zoom level.
e View >Zoom menu

The Editor defines zoom level in percents, 100% being the default. The scale range is from 20% to
200%.

ddd 28 Dec 2005 Page 13 of 37

VIMOS Software Family Using the Editor

2.2.2. The grid

This concept is very popular among drawing applications, so it is very likely that you are already
familiar with it.

The grid is displayed as little dots scattered on the workspace. It helps you align your icons in good-
looking rows and columns.

The grid is optional. You can turn it on/off from View > Grid menu. It is on by default.

When the grid is on and you move an icon it snaps to the nearest grid point.

2.2.3. Add icons

Adding new icon to your diagram is a breeze. Just press the icon’s button in the toolbar or choose the
icon from the Tools menu. The mouse pointer will change to a cross. Then click on the diagram where
you want to place instances of that icon. You can place as many instances as you want. Right-click or
hit Esc key to restore mouse pointer and return to normal operation.

As you can see there is a toolbar button for each icon type. If you cannot recognize the icon by the
picture on the button, hold the mouse over the button and you will see a hint with the icon name.

2.2.4. Select icons

You can select several icons and work with them as a group. Selected icons appear with dashed
outline.

You can select a number of neighboring icons with a single mouse action. Just drag the mouse,
starting at an empty place on the diagram. As you drag you will see a dashed rectangle expand/shrink.
This is the selection rectangle. When you release the mouse, all icons that fall inside or intersect the
selection rectangle will be selected. Any previous selection will be cleared.

To select icons outside the current view, drag the mouse past the edge of the window. This will make
the diagram scroll in that direction. Release the mouse or drag it back inside the window and the
diagram will stop scrolling.

You can toggle an individual icon selection by clicking it while holding down Ctr1 key. This way you
can add/remove icons to/from selected group.

To clear the selection, just click on an empty place on the diagram or hit Esc key.

2.2.5. Arrange icons

Icon disposition does not affect the user-program in any way. It is used only for aesthetic reasons and
to make the diagram more readable.

You can move icons by dragging them with the mouse. If the grid is on, the icons will snap to the
nearest grid point when you release the mouse. If you want to place the icon at arbitrary position, turn
the grid off. For details about the grid see section “2.2.2. The grid”.

To move an icon outside the view, drag it past the edge of the window. Then the diagram will start
scrolling in that direction. Release the mouse or drag it back inside the window and the diagram will
stop scrolling.

While you can expand your diagram to the right and to the bottom indefinitely, you cannot move an
icon past the left or top border.

If you drag any of the selected icons, all selected icons will move together. This way you can easily
move a portion or the whole diagram to new location.

ddd 28 Dec 2005 Page 14 of 37

VIMOS Software Family Using the Editor

2.2.6. Delete icons

There are several ways to remove icons from the diagram:

e Choose Delete from icon’s context menu (brought up with right-click). If the icon is part of a
selection, this action will delete all selected icons.

o Hit Del key to delete all selected icons at once.

e Press Delete button g in the main toolbar. The mouse pointer will change to delete icon.
Click each icon you want to delete. Right-click or press Esc key to restore the mouse pointer
and return to normal mode of operation.

You cannot delete the Begin icon.

2.2.7. Copy/Paste

You can copy selected icons to the clipboard and then paste them to a new location, another user-
program or another application (e.g. MS Word).

Note: when pasting icons back in Editor, only links and connections among participating icons are
preserved. For more information about tool connections and links see sections “2.3.5. Connecting
tools”; “2.3.6. Tool links”.

Note: when pasting icons to another application only their graphical representation is preserved.
Enhanced metafile is used for this operation so the resulting graphic can be scaled in accurately in the
receiving application.
As with most Windows applications you can copy the selection with:

e Edit > Copy menu

e Ctrl+C shortcut

EE
e Copy button

Then you can paste it in Editor with:
e Edit > Paste menu
e Ctrl+V shortcut

e Paste button E

2.2.8. Duplicate icons

Often you will need to copy an icon or a group within the same diagram and preserve argument links
with remaining icons. To do this select the desired icons and duplicate them with:

e Edit > Duplicate menu
e Ctrl+D shortcut

e Duplicate button @

Note: links between results of selected figures and arguments of unselected figures will not be
duplicated because an argument cannot be linked to several results.

For more information about tool connections and links see sections “2.3.5. Connecting tools” and
“2.3.6. Tool links”.

2.2.9. User comments

A user comment is arbitrary text appearing inside a rectangular icon with rounded corners. You can
place as many comments as you wish.

ddd 28 Dec 2005 Page 15 of 37

VIMOS Software Family Using the Editor

Generally, comments are used to document a user-program. In comments you usually write program
description, explain the function of a tricky part of the program, record author's name and copyright
holder information, etc.
Beside the text, each comment also has a style. Comment style includes:

e Text font and color

e Text alignment within the icon

e |con background color

Follow this procedure to add new comment to the diagram:

1. Press Comment button ﬂ in the main toolbar or choose Tools > Comment menu. This will
change the mouse pointer into a cross.

2. Click on the diagram where you want to place the comment icon. The Comment dialog box will
pop up.

3. Enter comment text and style (see section “2.2.9.1. Comment dialog box”).

4. After you close the dialog, you will see the new comment on the diagram.
a. To create another comment, proceed with step 2, or
b. To restore the mouse pointer and return to normal operation, right-click or press Esc key.

To change a comment, double-click its icon. This will open again the Comment dialog box. Here you
can change comment text and style.

not exported with the rest of the diagram. If you export a diagram and then import it back in
the Editor, you will lose your comments.

@ INFORMATION. Metaprograms (-mpr) do not support user comments. So comments are

2.2.9.1. Comment dialog box

This dialog box allows you to review and change the properties of a comment. Here is the description
of its controls:

e Comment text box — enter here your comment text

e Align —text alignment within the icon (left, center or right)

e Font — press this button to select text font and color from a standard Windows dialog

e Box Color — press this button to select icon background color from a standard Windows dialog
e Styles list — list of available styles. The Editor comes with some handy predefined styles.

e Styles text box — you can enter here a name for a new style (see Add button)

e Apply — push this button to apply the style selected from the list and close the dialog

e Update — updates the currently selected style in the list with current settings

e Delete — removes the selected style from the list

e Add — adds a new style with current settings and name — from the text box

ddd 28 Dec 2005 Page 16 of 37

VIMOS Software Family Using the Editor

Comment X
Comment:
comment texst ﬂ

w
4 2

Align; ILeft "’I Font... | Box Color. ..

— Styles
Caphion
default |l pdate |
Denze
Harmnal [relete |
Add

Cancel

d

Note that changes you make to the style list are permanent and are not revoked if you press Cancel.

The list of comment styles is global to the Editor and not bound to any diagram. This list is not saved
in the _aef file.

Also note that changes you make to a style do not affect comments that use this style. You have to
reapply the style if you want to update them.

2.3. Managing user-program tools

Tools are the building blocks of a user-program. Each tool is specialized in performing a specific task.
By combining the proper tools, you can develop a user-program that solves your problem.

There are four kinds of tool icons:

Begin End Regular tool Condition
Find Elobs
Tool 1 roig
* & gl {]

|
Begin and End icons are not real tools. They do not perform any task. Their only use is to mark the
start and end of the user-program.

Each diagram has exactly one Begin icon. You can neither remove it nor add more of it. This is where
your program starts.

You can have one or more End icons in your diagram. This is where your program completes.

INFORMATION. In run-mode, VIMOS executes the user-program in a loop. So, after
0 reaching an End, the execution goes back to Begin. This goes on until run-mode is
stopped.

For more information refer to the “VIMOS Programming” manual.

To add End icon use End button ﬂ or Tools > End menu. For details see section “2.2.3. Add icons”.

ddd 28 Dec 2005 Page 17 of 37

VIMOS Software Family Using the Editor

The condition introduces a branch in the path of execution. Two arrows, going out of condition icon,
represent the possible ways to continue execution. Executions will take the green arrow, if condition is
true and the read arrow, if false. For more information see sections “2.3.5. Connecting tools” and
“2.3.2. Conditional branches”.

For complete description of all tools refer to the “Tools Description” manual.

For an in-depth discussion of VIMOS user-program read the “VIMOS Programming” manual.

2.3.1. Tool properties

This section is about properties of regular tools. For condition’s properties, see section “2.3.2.
Conditional branches”.

Double-click a tool’s icon to see its properties. This will open the Properties dialog for this tool. Here
you can view/change the tool’s properties.

Properties : Edge detection 1 Ed |

Title: IEdge detection 1

— Argumentz
& |nputs ' Outputs EI
Mame | Type | " alue | inirmum | b airnim | Default &
cehker <Paint: [369.286]
centerx int 363 363
centery’ int 206 206
center steer.® <Point> [0.0]
center. steer.y <Point> [0.0] —
width it a0 I 1000 an
hieight it 10 I 1000 10
angle float 1] 0 360 0
angle.steer float 1] 1]
line ztule int 1] 1]
. |

—Argument info
" alue; I

o | Do | andetaut |

T ool description: Fopup hirt:
Thiz tool uges an input rectangle, which defines ﬂ

the tool wark, area. The rectanale may be rotated.

A edae [a tranzition from dark ta ight pizels or

wice verza) is detected in the rectangle. The tool
rezult iz a point, which iz located on the edge, j

ol
=
o
=
o

Cloze

J

Properties dialog controls:
e Title — here you can change this figure's title
e Inputs — select this radio button to show tool's arguments in the list
e Outputs - select this radio button to show tool’s results in the list
e List— here you can see all arguments/results of this tool
e Argument info — information about the currently selected argument/result in the list above

e Value — currently selected argument value. Here you can change the value. This text box
is disabled for results.

e Unlink — this button is displayed in place of Value edit when the selected argument is
linked. Press it to unlink the argument.

ddd 28 Dec 2005 Page 18 of 37

VIMOS Software Family Using the Editor

e Set — push this button to update selected argument’s value with the text from Value box
o Default — resets selected argument to its default value (see column Default in the list)
e All default — resets all argument to their default values (see column Default in the list)
o Read-only text box — displays short description for selected argument/result
e Tool description — short description for this tool

e Popup hint — you can enter here the popup hint to be displayed when you hold the mouse
pointer over this tool’s icon. Leave it empty to display the default popup hint.

So, to change an argument’s value, you have to select it in the list of arguments. Then you will see its
value in the Value box. Edit the value and push Set or hit Enter to update it. You should see the
argument’s value change in the list.

You cannot change the value of a linked argument. To do so you have to unlink it first using the
Unlink button. See section “2.3.6. Tool links” for details.

When you add a new tool to the diagram, all its arguments are set to their default values.

To understand why tool arguments and results appear different in the Editor than in VIMOS-Kernel,
read section “3.1.2. Tool arguments and results”.

2.3.2. Conditional branches

The condition statement used in a branch consists of one or more comparisons combined with
Boolean AND and OR operators. Each comparison matches a tool result against a constant value.

Here is a sample condition statement:

Circle 1.radiusl.err ==
&& Circle l1l.radiusl > 100
|| Edge detection 1l.point.X <= 420

Here && is AND operator and | | is OR operator.
@ INFORMATION. AND operators take precedence over OR operators.

When you hold the mouse pointer over a condition icon, you will see its statement in a popup hint.

To modify a condition’s statement, double-click its icon. You will see the Build Condition Statement
dialog box.

ddd 28 Dec 2005 Page 19 of 37

VIMOS Software Family Using the Editor

Build Condition Statement

Circle 1.radius1 =l> =] {00

Set | =1 | Delete |

Circle 1.radiuzl e ==10
¢ b Circle 1 radiyz] = 100
[l Edge detection 1.point. <= 420

Cloze

Build Condition Statement dialog controls:

AND — when pressed, the current comparison is combined with the preceding using the AND
operator

OR — when pressed, the current comparison is combined with the preceding using the OR
operator

Tool result dropdown — select a tool result to compare. You can choose from all the results you
have linked to this Condition.

Operator dropdown — choose comparison operator
Value box — enter a constant value to compare against the selected result

Set — push this button to update the selected comparison in the list with the settings from
controls above

New — adds new comparison to the statement using the settings from controls above
Delete — removes the selected comparison from the statement

List — displays the full condition statement, one comparison per line

Close — press to apply changes and close the dialog

ATTENTION. You should not connect conditional branches arbitrarily. They should be
properly nested. This means that nested branches should merge before their parent
branches. This restriction is caused by VIMOS Kernel where the user-program is
presented linearly with IF-ELSE constructs.

Here is an example of mixed conditional branches, i.e. they do not nest properly.

ddd

Cirzle1 T oot B ||
. T
_ e iy

Texk EBox g /

T

28 Dec 2005 Page 20 of 37

VIMOS Software Family Using the Editor

2.3.3. Enable/disable a tool

VIMOS maintains enabled/disabled state for each tool in a user-program. A disabled tool is neither
executed nor drawn in run-mode. Disabled tools are skipped during user-program execution. Tool
results preserve their values from last tool execution.

Icons of disabled tools appear embossed.

To enable/disable a tool in Editor, right-click on its icon. This will show its context menu. Choose
Disabled item to toggle tool state.

2.3.4. Hide/show a tool

Larger programs can easily clutter the screen with graphics. To avoid this you can hide some tools
during run-mode.

INFORMATION. Hidden tools are executed like ordinary tools. They are not drawn in
@ VIMOS-Kernel and their drawings are not seen in run-mode. In the Editor their icons are

still visible.

Icons of hidden tools appear dim.

Check/uncheck Hidden item from icon’s context menu to hide/show the respective tool. This menu
item is not available when the tool is disabled.

2.3.5. Connecting tools

Arrows, connecting icons on a diagram, represent the order of tool execution. Each tool or condition
should be in a path of execution starting from Begin and ending at an End icon. That means that each
tool should have one incoming and one outgoing arrow. Each condition should have one incoming and
two outgoing arrows.

Note: A tool can use results only from tools that go before it in the execution path. This means that
you can link arguments only to preceding tools and results — only to succeeding tools.
To connect two tools:

1. Right-click first tool’s icon to open its context menu.

2. Choose Create connection command. Now, as you move the mouse you see an arrow going
from icon’s center to the mouse pointer.

3. Click on tool's/condition’s icon that should be executed next. This will connect the two icons with
an arrow.

You connect conditions the same way except that you have to make two outgoing arrows for each
condition. Use Create TRUE connection and Create FALSE connection commands from condition’s
context menu to do this. The TRUE arrow is drawn in green and the FALSE one — in red. For more
information see section “2.3.2. Conditional branches”.

2.3.6. Tool links

Tool cooperation is the key to making powerful user-programs. This is achieved by exchanging data
among different tools. One tool can use as an argument the result of another tool. We call this linking
tool results to arguments.

You can link one result to several arguments. The opposite is impossible — you cannot link one
argument to several results.

2.3.6.1. View links

Normally, links among tools are not displayed on the diagram. However you can select to view all links
of a particular tool.

ddd 28 Dec 2005 Page 21 of 37

VIMOS Software Family Using the Editor

To do this:

1. Press Links button @ in the main toolbar, hit F8 key or choose menu option View > Links.

Mouse cursor will change to a pointing finger ® .

2. Click an icon to see all its links. Incoming links are displayed as dashed red arrows, outgoing —
as dashed blue arrows. Repeat this for each icon whose links you want to see.

3. To restore the mouse pointer and return to normal operation, right-click, hit Esc or F8 key, press
Links button or choose menu option View > Links.

While you see the link arrows for an icon, click any one of them to see the names of linked argument
and result in a popup menu.

You can also see linked tool arguments in its Properties dialog. The value of each linked argument is
displayed as the full name of linked result.

Here is an example:

radiusl == Text_Z.Float

It shows you that radiusl result is linked to Text 2.float argument. It is possible to select this
menu item. In this case the Editor will ask you if you want to delete this link. The link will be deleted
after your confirmation.

If you want to view all the links in the diagram select menu View > All Links. This will show the links
among all icons.

2.3.6.2. Link arguments and results

Note that one tool can use results only of a preceding tool, i.e. the source tool should be executed
before the target one.
To link a tool’s result to another tool's argument:

1. Right-click source tool’s icon to open its context menu.

2. Choose the desired output from Link output submenu. Now, as you move the mouse you see a
dashed arrow going from icon’s center to the mouse pointer.

3. Click on the target tool/condition icon.
a. If the target is a condition, the link will be complete.
b. If the target is a tool, you will see a popup menu with all its arguments. Only arguments of
matching types will be available. Choose the desired argument and the link will be complete.

You can create the same link in reverse order. First you select the target argument, then — the source
result. It is the same link, no matter which way you do it.

2.3.6.3. Delete links

One way to delete a link is to show the links of one of the participating tools, click on the desired link
and select the corresponding context menu item. See section “2.3.6.1. View links” for details.

An alternative approach is to display the receiving tool Properties, select the desired argument and
press Unlink button.

2.4. Subroutines

Subroutines (subprograms) are very useful when constructing large user-programs or when reusing
existing solutions. A subroutine is like a usual user-program but you can declare some of its
arguments and results as public. Then you can insert the subroutine in another user-program and use
it just like an ordinary tool, i.e. it is displayed in the diagram by a single icon. The arguments and
results of the new icon are the public arguments and results of the subroutine. They can be linked to

ddd 28 Dec 2005 Page 22 of 37

VIMOS Software Family Using the Editor

other tools in the diagram as usual. During user-program execution the subroutine will be executed as
if it body was part of the calling user-program.

To make a new subroutine first you have to create a new user-program (section 2.1.2) or open an
existing one (section 2.1.3). Then select menu item File > Save As Subroutine and choose new file
name where the subroutine will be saved. This will bring the Subroutine properties dialog.

Project Properties X

Generall Froperties Subrouting |

M arne: II'I'I}'_S'-J':' T ooltip: IM_',' subrotine 1
Image name: Imy_sul:n_image.hmp Width: IEEI— Height: IEIEI—
Target cameras: Dezcription:
= : Py first subrauting =]
MHone |
] Canicel | Help |

Here you have to give you subroutine a Name and select Target camera models.

ATTENTION. Due to lack of resources you can't use subroutines on ADSP cameras
(VC38, VC61) and sensor cameras (VCM40, VCM50).

You can also customize the Tooltip, Image and Description associated with your subroutine. If you
specify Image name, it should be a BMP file. If relative path is used, the directory containing the
subroutine is used as base.

You can always open this dialog from menu File > Properties.
A subroutine is stored in two files:
e _mcr file — the main file where user-program data is stored

e _ini file — contains description of subroutine interface and other data used by Editor. Created
automatically with the same base name as the .mcr file.

Note: with the use of subroutines you could easily create enormous user-programs that can consume
the limited resources available on the camera, so use them judiciously.

2.4.1. Public arguments/results

You have to specify which arguments and results can be used from other user-programs (including
other subroutines). These are called subroutine’s public arguments and results. A subroutine receives
input from its public arguments and emits output through it public results.

To change public argument and results open the desired tool Properties dialog. Public arguments and

results are marked with the public icon Y 1o change the public state of an argument or result, select
it in the list and toggle the Public checkbox.

Note: public arguments are not allowed to link because they are reserved to link to the calling
program.

ddd 28 Dec 2005 Page 23 of 37

VIMOS Software Family Using the Editor

Properties : Edge detection 1 Ed |

Title: IEu:Ige detection 1
— Argumentz
& |nputs ' Outputs EI
Mame | Type | " alue | inirmum | b airnim | Default &
B certe | <Pairt> (369,286)
centerx int 3JE3 369
center 'y’ it 286 286
center.steers <Pointy [0.0] e
centersteery <Pointy [0.0]
width it a0 I 1000 an
hieight it 10 I 1000 10
L angle float 0 1] 360 1]
simla chaar Flest i n x
| | ¥
—Argument info _]
Value: ID Center rectangle paint ﬂ
st | oeta | aidetauk | B Publc I
T ool description: Fopup hirt:
Thiz tool uges an input rectangle, which defines - ﬂ
the tool work. area. The rectangle may be rotated.
A edge [a tranzition from dark ta ight pigelz or
vice verza) iz detected in the rectangle. The tool
rezult iz a point, which iz located on the edge, j j
Cloze |

2.4.2. Calling subroutines
You can add subroutines to your user-program via menu Subroutines > Add or Subroutine button

e . The mouse pointer will change to a cross. Then click on the diagram where you want to place
instances of that subroutine. You can place as many instances as you want. Right-click or hit Esc key
to restore mouse pointer and return to normal operation. You connect and link the subroutine to other
tools as usual (see sections 2.3.5, 2.3.6).

When you add a subroutine the Editor doesn’t copy its contents into your user-program, but stores
only the path to subroutine definition (. ini) file. To see this path, open the Properties dialog of the
subroutine figure. At the bottom of the dialog you can see the path to subroutine definition file. You
can change it through the browse button next to it.

2.4.3. Listing subroutines used
If you want to find out all subroutines used directly or indirectly (through other subroutines) by your

ZUE
user-program press the List Subroutines button ﬂ or choose menu Subroutines > List. This will
show the Subroutines used list. If a subroutine calls other subroutines, they are listed bellow it and
indented. Ellipses (...) in this list indicate places where a subroutine is called recursively.

ddd 28 Dec 2005 Page 24 of 37

VIMOS Software Family Using the Editor

Subroutines uzed B |

rect [d:stesthaubroutinezirect. mer) ;I
buttan [d: \testhzubroutinesz buttan. mer]
edit_button [d:\testhsubroutineshE dit-Button.mer)

button [d:\teztssubroutineshbutton. mer]

KN _"ILI

2.4.4. Collecting subroutines

Sometimes you will need to copy your user-program to another computer. To be sure you will get all
necessary files, it is best to collect subroutines first. You do this with Subroutines > Collect menu.

This operation will gather all subroutines that your user-program depends on in Subroutines
subdirectory where your user-program resides. This directory will be created automatically if
necessary.

2.4.5. Reloading definitions

Since the multi-document interface (MDI) allows you open several diagrams, you could change a
subroutine that is used by an open user-program. To reflect the changes you have to update the

calling user-program. You do this by pressing the Reload definitions button J This is necessary
only when you make changes to public arguments and results or the appearance of the subroutine
(e.g. its icon).

2.5. Editor options

You can adjust some global Editor options. To do this, select menu Edit > Options. This will open the

Options dialog:
options x|

Unda levels: I j
Scroll gpeed: I—‘IEIj Cancel |

r Allove data links independent

from tool order
Help |

The available options are:

e Undo levels — levels of undo/redo maintained by the Editor. Note that each undo level
requires enough memory to copy the whole user-program. If you work with large diagrams and
you computer has little memory, decrease this value. Change in this option will not affect
currently open documents.

ddd 28 Dec 2005 Page 25 of 37

VIMOS Software Family Using the Editor

e Scroll speed — a number between 1 and 100, which defines the scrolling speed of the Editor.
Greater numbers specify greater speeds.

e Allow data links independent from tool order — this check box enables linking of tool results
to tools, which are placed before the tool in the execution sequence (i.e. the connection
sequence).

ddd 28 Dec 2005 Page 26 of 37

VIMOS Software Family Using the Editor

3. Editor special features

3.1. Pseudo-tools

Not all tools available in the Editor are real VIMOS-Kernel tools. Some of them exist only in the Editor
to make diagram construction more convenient. Their job in the Kernel is done by the system itself.

This is the current set of pseudo-tools:
e Mouse tool
e Counters tool
e Calculator 2

Since pseudo-tools do not exist in the Kernel, the following operations are not applicable to them:
o Enable/disable
e Hide/show
e Edit in the Simulator

INFORMATION. When the Simulator exports a user-program, it generates mouse and

@ counters pseudo-tools (if necessary) and places these pseudo-tools in the beginning of the

generated metaprogram. So when you update a user-program from the Simulator back in
— the Editor, you will see that the pseudo-tools are connected after the Begin. Therefore, we
recommend connecting these tools after the Begin icon when you create your program

The Simulator exports series of calculator tools into one calculator 2 tool to Editor.

3.1.1. Mouse tool

As you already know, there is no Mouse tool in VIMOS-Kernel. Nevertheless you can link point
arguments to the mouse. This is actually steering to the mouse, because the point argument retains its
relative position on the screen. (Were it direct link, all points linked to the mouse would snap to the
same point on the screen.)

To make this possible in the Editor, a pseudo-tool has been introduced — the Mouse tool. Its result
point provides the current mouse position.

@ ATTENTION. You should not link the Mouse’s result directly to any tool's argument.
4],]] Instead, you should link it to the corresponding steering arguments (.steer.x and
.steer.y).

3.1.2. Counters tool

Place this tool at the beginning of the diagram if you are going to use counters in your program. The
tool retrieves the values of several statistics counters. Each argument value specifies humber of
counter, the value of which is returned by the respective result. Currently there are 1023 counters
numbered from 1 to 1023.

ddd 28 Dec 2005 Page 27 of 37

VIMOS Software Family Using the Editor

3.1.3. Calculator 2

This pseudo-tool generates a sequence of ordinary calculator tools in the user-program, which
implement more complex calculation formula. The calculations are organized in a tree of binary or
unary operations.

Build desired diagram with all necessary connections between tools. First you should link to the
calculator 2 tool all tool results, which participate in the calculations. You can do this by opening tool
context menus by right clicks and then linking tool outputs to calculator 2.

Now you are ready to program the calculator 2 itself. Open the “Properties” dialog by left double click.
Select a root calculator operation by the Operator combo-box. Select left and right operands (left
operand only for unary operations). Each operand can be a constant, a link to one of the selected
already results or a formula, which adds next entry to the tree. Click on Constant (if enabled), Link or
Formula radio-button to specify current left and right operand. Select a desired tool result by the Link
combo-box. Selecting Formula will open a child window, which defines next level in the operation tree
in a similar manner. The calculations are done as if operands and operation from a given tree level are
closed in brackets.

3.2. Tool arguments and results

You will notice some difference in tool arguments and results between the Editor and VIMOS-Kernel.
This is caused by some special features of VIMOS-Kernel.

3.2.1. Steering

This feature allows you to specify an argument value relative to some result. In the Editor this is
achieved by adding some extra arguments. In effect, a steered argument’s value changes together
with referenced result’'s value, i.e. their difference remains constant.

3.2.1.1. Angle steering

For each angle argument in VIMOS-Kernel an extra steering argument is added in the Editor.
Steering argument name: <base name>.steer

Here <base name> is the name of the original angle argument.

If the steering argument is not linked to a result, it will be ignored.

If it is linked, effective argument value = <base value> + <steering value>.

Here <base value> is the value of the original angle argument and <steering value> is the value of the
result linked to the steering argument.

3.2.1.2. Point steering

For each point argument in VIMOS-Kernel two extra steering arguments are added in the Editor — X-
steering and Y-steering. This is done to allow independent steering in horizontal and vertical
directions.

X-steering argument name: <base name>._steer.x

Y-steering argument name: <base name>_steer.y

Here <base name> is the name of the original point argument.
Any steering argument that is not linked to a result will be ignored.

Effective argument value:
X = <base value's X> + <X-steering value’'s X>
Y = <base value’s Y> + <Y-steering value’s Y>

ddd 28 Dec 2005 Page 28 of 37

VIMOS Software Family Using the Editor

Here <base value> is the value of the original point argument, <X-steering value> is the value of the
result linked to the X-steering argument and <Y-steering value> is the value of the result linked to the
Y-steering argument.

3.2.2. Variable type arguments

Some arguments in VIMOS-Kernel can hold values of different types. Such arguments are called
variable type arguments.

In the Editor each argument has its type and it cannot be changed. To overcome this difference, each
variable-type argument from the Kernel is represented in the Editor by a group of arguments — one for
each type accepted.

Each one of these arguments has a special name: <base name> . <type>

Here <base name> is the name of the original VIMOS-Kernel argument and <type> is the type name
(int, float, string or point).

Here is how the effective argument value is determined. If any argument in the group is linked, the
value of the referenced result will be used. Otherwise, the value of the first argument in the group will
be used.

@ INFORMATION. Variable type arguments cannot be steered.

3.2.3. Results’ error codes

In VIMOS-Kernel each tool result consists of two fields: result value and associated error code. Error
code 0 indicates success.

@ INFORMATION. For description of result error codes see “Using the VIMOS-Kernel”
manual.

To reflect this in the Editor, an extra result is added for each VIMOS-Kernel result. Thus in the Editor
each tool has twice as many results as in VIMOS-Kernel.

Each extra result has a special name: <base name>.err
Here <base name> is the name of the original VIMOS-Kernel argument.

This extra result provides the error code of the corresponding result.

3.2.4. Example
As an example let's take a look at arguments and results of Line Across Circle tool.
Arguments Results
Editor VIMOS-Kernel Editor VIMOS-Kernel
Angle Angle po,ntl pointl
Angle._steer pointl.err
Center pointlrw _
. pointlrw

Center.steer.x Center pointlrw.err
Center.steer. i -

- y po!ntz point2
Point point2.err
Point.steer.x Point point2rw _

. - point2rw
Point.steer.y point2rw.err

ddd 28 Dec 2005 Page 29 of 37

VIMOS Software Family

Radius.float

Radius.int

Radius

You can see that Angle argument uses angle steering.

Center and Point arguments use point steering.

Radius is a variable type argument. It accepts both floating-point and integer values.

Each result has a companion -err result for the error code.

ddd

28 Dec 2005

Using the Editor

Page 30 of 37

VIMOS Software Family

4. User interface reference

4.1. Main menu

Using the Editor

4.1.1. File
Menu item Description See section
New Create new user-program. “2.1.2. Create a new user-program”

Open program...

Open existing user-program in a new
window.

“2.1.3. Open an existing user-program”

Close Close the active user-program.
Save Save the active user-program. “2.1.4. Save changes”
Save As... Save the active user-program under a | “2.1.4. Save changes”

different file name.

Save As Subroutine...

Save the active user-program as s
subroutine to new file.

“2.4. Subroutines”

Properties...

View/change user-program properties.

“2.1.1. User-program properties”

Run in Simulator

Run active user-program in the
Simulator.

“2.1.7.1. Run user-program in the
Simulator”

Import... Create new user-program from an “2.1.7.3. Manual user-program import”
-mpr file.
Export... Saves the active user-program as an | “2.1.7.4. Manual user-program export”

-mpr file.

<recent files>

List of recently opened files.

Exit Close all user-programs and exit the
Editor.
4.1.2. Edit
Menu item Description See section

Program components...

Display information about all tools.

Options... Display Editor Options dialog “2.5. Editor options”

Redo Redo changes. “2.1.5. Undo/redo”

Undo Undo changes. “2.1.5. Undo/redo”

Duplicate Duplicate selected figures “2.2.8. Duplicate icons”

Cut Copy selection to clipboard and remove it | “2.2.7. Copy/Paste”
from the diagram

Copy Copy selection to clipboard “2.2.7. Copy/Paste”

Paste Paste clipboard contents to diagram “2.2.7. Copy/Paste”

Delete Delete selected figures “2.2.6. Delete icons”

Select All Select all figures in the diagram “2.2.4. Select icons”

4.1.3. View

Menu item Description See section

Toolbars Hide/show main toolbar “1.1. Editor window”

Status Bar Hide/show status bar “1.1. Editor window”

Grid Hide/show the gird on active diagram. “2.2.2. The grid”

ddd 28 Dec 2005 Page 31 of 37

VIMOS Software Family

Using the Editor

Output Window Hide/show the output window. “1.1. Editor window”
Zoom Change zoom level for active diagram. “2.2.1. Zoom”
Refresh Redraw active diagram. “2.1.6. Refresh the diagram”
Links View links of a particular icon. “2.3.6.1. View links”
All Links View links among all icons “2.3.6.1. View links”
4.1.4. Tools
Menu item Description See section
Condition Add a conditional branch to active user- “2.3.2. Conditional branches”
program.
End Add End icon to active diagram. “2.3. Managing user-program tools”
Comment Add Comment icon to active diagram. “2.2.9. User comments”
<tool groups> Add atool to active user-program. Related | “2.2.3. Add icons”
tools are grouped together.

4.1.5. Subroutines

Menu item Description See section
Add... Insert subroutine call in the diagram. “2.4.2. Calling subroutines”
List... List all subroutines used “2.4.3. Listing subroutines used”
Collect Collect all subroutines used in one folder “2.4.4. Collecting subroutines”
4.1.6. Window
Menu item Description See section
New Window Open a new window with the active
diagram.
Cascade Arrange windows so they overlap.
Tile Arrange windows as non-overlapping tiles.
Arrange lcons Arrange icons at the bottom of the main
window.
<open windows> List of all open diagram windows. Use it to
switch the active window.
4.1.7. Help
Menu item Description See section
Register... Register the Editor. “1.4. Register the Editor”

About VIMOS Editor...

Display information about the Editor, such
as version, copyright, license text etc.

4.2. Main toolbar
DM@ % BRG] 2ok e @@E > £HT

Toolbar item Description See section

E New

Create new user-program. “2.1.2. Create a new user-program”

Open existing user-program in a new

window. 2.1.3. Open an existing user-program

g Open

E Save

Save the active user-program. “2.1.4. Save changes”

ddd 28 Dec 2005 Page 32 of 37

VIMOS Software Family

Using the Editor

E Export

Export user-program to another
format.

“2.1.7.4. Manual user-program export”

ﬂ Cut

Copy selection to clipboard and
remove it from the diagram

“2.2.7. Copy/Paste”

Copy Copy selection to clipboard “2.2.7. Copy/Paste”
) Paste Paste clipboard contents to diagram “2.2.7. Copy/Paste”
= Duplicate Duplicate selected figures “2.2.8. Duplicate icons”

ﬂ Undo

Undo changes.

“2.1.5. Undo/redo”

Redo changes.

“2.1.5. Undo/redo”

7 Display information about the Editor,
About such as version, copyright, license
text etc.

100% =l so0m dcigg?g; zoom level for active “2.2.1. Zoom’”

& Delete Delete icons by clicking them. “2.2.6. Delete icons”

EL] Links View links of a particular icon. “2.3.6.1. View links”

@’ Refresh Redraw active diagram. “2.1.6. Refresh the diagram”

Iy . . “ . .. »
Reload definitions Reload icon definitions 2.4.5. Reloading definitions

> Run active user-program in the “2.1.7.1. Run user-program in the
“Z1Run Simulator. Simulator”

e List subrouti List all subroutines used “2.4.3. Listing subroutines used”
= 1List subroutines

S Subrouti Insert subroutine call in the diagram. “2.4.2. Calling subroutines”

ubroutine

T c . Add Comment icon to active diagram. | “2.2.9. User comments”
= 1Commen

4.3. lcon context menu

When you right-click an icon, you will see its context menu.

Context menu items depend on the type of its icon. Here is a list of all possible items you could see in

this menu.

LCreate connection
Dizabled
Hidden

wi Edit in Simulator

o Delete Del

Link. output 3
Link input 3

Froperties

Menu item

Description

See section

Create connection

Connect the icon.

“2.3.5. Connecting tools”

Create TRUE connection

Connect True branch of the
condition icon.

“2.3.5. Connecting tools”

Create FALSE connection

Connect False branch of the
condition icon.

“2.3.5. Connecting tools”

Disabled

Toggle icon’s disabled state.

“2.3.3. Enable/disable a tool”

ddd

28 Dec 2005

Page 33 of 37

VIMOS Software Family

Using the Editor

Hidden

Toggle icon’s hidden state.

“2.3.4. Hide/show a tool”

Edit in Simulator

Edit this tool in the Simulator.

“2.1.7.2. Edit user-program in the
Simulator”

Delete Delete selected icons. “2.2.6. Delete icons”

Link output Choose a tool result to link. “2.3.6.2. Link arguments and results”
Link input Choose a tool argument to link. “2.3.6.2. Link arguments and results”
Properties Display icon properties dialog. “2.3.1. Tool properties”

4.4. Output window context menu

When you right-click inside the Output window, you will see its context menu.

Menu item Description See section

Clear Clear all messages.

Hide Hide Output window.

4.5. Shortcut keys

You can use these shortcut keys with the active diagram.

Menu item Description See section

Del Delete selected figures. “2.2.6. Delete icons”

F5 Redraw active diagram. “2.1.6. Refresh the diagram”

F8 View links of a particular icon. “2.3.6.1. View links”

F9 Run active user-program in the “2.1.7.1. Run user-program in the Simulator”
Simulator.

Ctrl+A Select all figures in the diagram “2.2.4. Select icons”

ctrl+C Copy selection to clipboard “2.2.7. Copy/Paste”

Ctri+D Duplicate selected figures “2.2.8. Duplicate icons”

Ctri+N Create new user-program. “2.1.2. Create a new user-program”

Ctrl+0 Open existing user-program in a new “2.1.3. Open an existing user-program”
window.

Ctri+S Save the active user-program. “2.1.4. Save changes”

ctri+Vv Paste clipboard contents to diagram “2.2.7. Copy/Paste”

Ctri+X Copy selection to clipboard and remove | “2.2.7. Copy/Paste”
it from the diagram

ctri+y Redo changes. “2.1.5. Undo/redo”

ctri+z Undo changes. “2.1.5. Undo/redo”

ddd 28 Dec 2005 Page 34 of 37

VIMOS Software Family Using the Editor

5. Message reference

This section describes warning and error messages that the Editor displays. You will see them in a
message box or in the Output window.

5.1. Warning messages

You can see some of these messages when you open a file saved by an older Editor version. This
happens when the format (arguments and result) of some tools has been changed since that version.
See section “2.1.3. Open an existing user-program”.

These messages are displayed in the Output window.

"<N> input(s) removed: <list of arguments>"

Some tool arguments have been removed. The message lists their names.

"<N> new input(s) added: <list of arguments>"
Some new tool arguments have been added. They have been set to their default values.

The message lists the names of the new arguments.

"Type mismatch in input <old name>(<old type>) -> <new name>(<new type>)"

The type of an argument has been changed. You can see its old name and type and its current name
and type.

"<N> output(s) removed: <list of results>"

Some tool results have been removed. The message lists their names.

"<N> new output(s) added: <list of results>"

Some new tool results have been added. The message lists their names.

"Type mismatch in output <old name>(<old type>) -> <new name>(<new type>)"

The type of a result has been changed. You can see its old name and type and its current name and
type.

5.2. Error messages

“Simulator is busy”

The Editor shows this message when it tries to connect to the Simulator but it is busy with some other
task.

The Simulator is considered busy when:

e User-program is running, i.e. it is in run-mode
Solution: switch to edit-mode or turn off simulation

e There is a menu or dialog open (Windows or simulated)
Solution: close the menu/dialog

“Simulation is off”

Simulation mode not activated in the Simulator. Normally, this should happen automatically.

ddd 28 Dec 2005 Page 35 of 37

VIMOS Software Family Using the Editor

This is an internal error.

Solution: try again or activate simulation mode manually in the Simulator.

"Unconnected figure."
There is no path from Begin icon to this one.

Solution: connect this icon in your user-program. See section “2.3.5. Connecting tools”.

"No conditions specified.”
Empty condition statement.

Solution: specify a condition statement. See section “2.3.2. Conditional branches”.

"Unconnected condition."

Both True and False branches of this condition icon should be connected. See section “2.3.5.
Connecting tools”.

"Empty inputin figure."

There is an argument with no value.

Solution: specify an immediate value for this argument or link it. See sections “2.3.1. Tool properties”
and “2.3.6.2. Link arguments and results”.

"Input can be linked only to a preceding figure.”

A tool can use results only from tools that go before it in the execution path.

Solution: change the execution order of the tools or link the argument to another tool.

"No operation found."
Empty user-program.

Solution: place at least one tool in your user-program.

"Mixed conditional branches."
Conditional branch do not nest properly. See section “2.3.2. Conditional branches”.

Solution: connect properly the tools in conditional branches.

"Loop back detected."
The tool is connected to a preceding tool in the execution path. Loops are not allowed.

Solution: change tool connections to avoid loops.

"Invalid operation connection."
This tool has no outgoing connection.

Solution: connect this tool to the next one in the execution path.

"Unexpected ELSEIF."
Unexpected ELSEIF encountered in .mpr file during import. The .mpr file is invalid.

Solution: regenerate the _mpr file or fix it with a text editor.

"Unexpected ELSE."
Unexpected ELSE encountered in .mpr file during import. The .mpr file is invalid.

Solution: regenerate the .mpr file or fix it with a text editor.

ddd 28 Dec 2005 Page 36 of 37

VIMOS Software Family Using the Editor

"Unexpected ENDIF."
Unexpected ENDIF encountered in .mpr file during import. The _mpr file is invalid.

Solution: regenerate the _mpr file or fix it with a text editor.

"Missing ENDIF."
Missing ENDIF in .mpr file during import. The .mpr file is invalid.

Solution: regenerate the _mpr file or fix it with a text editor.

"Missing definition <path to . ini file>"

Definition (. ini) file not found for this figure.

Solution: restore the definition file. If it is a subroutine, open and save it again. If it is an ordinary tool,
reinstall Vimos Editor. See section “2.4.2. Calling subroutines”.

"Missing subroutine <path to .mcr file>"

Subroutine file not found or corrupt subroutine definition file.

Solution: restore subroutine file and/or definition file. See section “2.4.2. Calling subroutines”.

"Failed to load document <path>"
Editor file is corrupt.

Solution: restore from backup.

"Failed to save document to <path>"
Editor was unable to save the document.

Solution: make sure the file is not read-only and that you have necessary permissions.

ddd 28 Dec 2005 Page 37 of 37

	Introduction
	Editor window
	User-program diagram
	Run the demo programs
	Register the Editor

	Editor functions
	Working with user-programs
	User-program properties
	Create a new user-program
	Open an existing user-program
	Save changes
	Undo/redo
	Refresh the diagram
	Integration with VIMOS Simulator
	Run user-program in the Simulator
	Edit user-program in the Simulator
	Manual user-program import
	Manual user-program export

	Managing diagrams
	Zoom
	The grid
	Add icons
	Select icons
	Arrange icons
	Delete icons
	Copy/Paste
	Duplicate icons
	User comments
	Comment dialog box

	Managing user-program tools
	Tool properties
	Conditional branches
	Enable/disable a tool
	Hide/show a tool
	Connecting tools
	Tool links
	View links
	Link arguments and results
	Delete links

	Subroutines
	Public arguments/results
	Calling subroutines
	Listing subroutines used
	Collecting subroutines
	Reloading definitions

	Editor options

	Editor special features
	Pseudo-tools
	Mouse tool
	Counters tool
	Calculator 2

	Tool arguments and results
	Steering
	Angle steering
	Point steering

	Variable type arguments
	Results’ error codes
	Example

	User interface reference
	Main menu
	File
	Edit
	View
	Tools
	Subroutines
	Window
	Help

	Main toolbar
	Icon context menu
	Output window context menu
	Shortcut keys

	Message reference
	Warning messages
	Error messages

